Optimal Foraging

Krishanu Sankar
Math 102 Section 107

October 16, 2017

OSH 3 Recap

Tradeoff between Math and Chemistry depends on difficulty of math exam, k.
https://www.desmos.com/calculator/73d5om1uwo

Recall: from OSH 2

Bears search for berries in patches that grow in patches that can be spread out across a large area. A bear will spend time in one patch gathering food before moving to another patch. The number of berries collected in a patch depends on the amount of time spent in the patch:

$$
f(t)=\frac{A t}{k+t}
$$

https://www.desmos.com/calculator/cwkxvbdpj2

How long should I stay in a food patch?

- Stay too long in one patch - diminishing returns as the patch gets depleted.
- Leave a patch too early - spend unnecessary time traveling.

How long should I stay in a food patch?

- $\tau=$ travel time
- $t=$ time spent in the food patch
- $f(t)=$ energy obtained during time t

Optimal Foraging

- Nature selects for the organism which can optimize food intake.

Optimal Foraging

- Nature selects for the organism which can optimize food intake. Two options:

1. Collect the most food per unit time $=$ average rate of energy gain

$$
R=\frac{\text { energy gained }}{\text { total time spent }}
$$

2. Get the most energy overall $=$ the net energy gain

$$
E=\text { energy in - energy out }
$$

Energy gain $f(t)$

Q1. Which of the following matches the given description of energy gain?

Collection is proportional to the amount of time I spend in the patch.
$f(t)$
A. Blue (solid)
B. Red (dash dot)
C. Green (dash)
D. Orange (dash dot dot)

Energy gain $f(t)$

Q1. Which of the following matches the given description of energy gain?

Collection is proportional to the amount of time I spend in the patch.
$f(t) \xrightarrow[t]{t}$

Energy gain $f(t)$

Q2. Which of the following matches the given description of energy gain?

Collection goes well at first but gradually goes down as the resource is depleted.
$f(t)$
A. Blue (solid)
B. Red (dash dot)
C. Green (dash)
D. Orange (dash dot dot)

Energy gain $f(t)$

Q2. Which of the following matches the given description of energy gain?

Collection goes well at first but gradually goes down as the resource is depleted.
$f(t)$
A. Blue (solid)
B. Red (dash dot)
C. Green (dash)
D. Orange (dash dot dot)

Energy gain $f(t)$

Q3. Which of the following matches the given description of energy gain?

Collection is initially difficult but becomes easier. Eventually there is no more food left.
$f(t)$

A. Blue (solid)
B. Red (dash dot)
C. Green (dash)
D. Orange (dash dot dot)

Energy gain $f(t)$

Q3. Which of the following matches the given description of energy gain?

Collection is initially difficult but becomes easier. Eventually there is no more food left.

$$
f(t)
$$

A. Blue (solid)
B. Red (dash dot)
C. Green (dash)
D. Orange (dash dot dot)

Average energy gain

- Average energy gain per unit time:

$$
R(t)=\frac{\text { energy gained }}{\text { total time spent }}
$$

Average energy gain

- Average energy gain per unit time:

$$
R(t)=\frac{\text { energy gained }}{\text { total time spent }}
$$

- energy gained $=f(t)$

Average energy gain

- Average energy gain per unit time:

$$
R(t)=\frac{\text { energy gained }}{\text { total time spent }}
$$

- energy gained $=f(t)$
- total time spent $=$ travel time + time at patch

$$
=\tau+t
$$

Average energy gain

- Average energy gain per unit time:

$$
R(t)=\frac{\text { energy gained }}{\text { total time spent }}
$$

- energy gained $=f(t)$
- total time spent $=$ travel time + time at patch

$$
=\tau+t
$$

$$
R(t)=\frac{f(t)}{t+\tau}
$$

Bear eating berries

$$
\begin{aligned}
& R(t)=\frac{f(t)}{\tau+t} \\
= & \frac{A t}{(\tau+t)(k+t)}
\end{aligned}
$$

Bear eating berries

$$
\begin{aligned}
& R(t)=\frac{f(t)}{\tau+t} \\
= & \frac{A t}{(\tau+t)(k+t)}
\end{aligned}
$$

'If the bear spends t minutes in each patch, the overall average rate of energy gain will be
$\frac{A t}{(\tau+t)(k+t)}$.'

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)
- For large $t: R \approx \frac{A t}{t \cdot t}=\frac{A}{t}$

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)
- For large $t: R \approx \frac{A t}{t \cdot t}=\frac{A}{t}$

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)
- For large $t: R \approx \frac{A t}{t \cdot t}=\frac{A}{t}$

Maximize $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- Find the critical points

$$
R^{\prime}(t)=A \frac{k \tau-t^{2}}{(k+t)^{2}(\tau+t)^{2}}=0
$$

Maximize $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- Find the critical points

$$
\begin{aligned}
& R^{\prime}(t)=A \frac{k \tau-t^{2}}{(k+t)^{2}(\tau+t)^{2}}=0 \\
& \Longrightarrow k \tau-t^{2}=0 \Rightarrow t= \pm \sqrt{k \tau}
\end{aligned}
$$

Maximize $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- Find the critical points

$$
\begin{aligned}
& R^{\prime}(t)=A \frac{k \tau-t^{2}}{(k+t)^{2}(\tau+t)^{2}}=0 \\
& \Longrightarrow k \tau-t^{2}=0 \Rightarrow t= \pm \sqrt{k \tau}
\end{aligned}
$$

- Keep the positive root: $t=\sqrt{k \tau}$.

Bear eating berries

Are we done? $t=\sqrt{k \tau}$.

Bear eating berries

Are we done? $t=\sqrt{k \tau}$. No - we must check that $t=\sqrt{k \tau}$ is a local maximum!

Either check that $R^{\prime \prime}(t)<0$ for $t=\sqrt{k \tau}$ OR make a justified argument sketching the function. In this case, because $t=\sqrt{k \tau}$ is the only critical point, we can conclude from the sketch that it is the maximum.

Bear eating berries

Q5. Recall that $t=\sqrt{k \tau}$.
If it takes the bear a long time to get to the patch, to maximize the average energy gain, the bear should
A. Stay in the patch for a longer time
B. Stay in the patch less time

Bear eating berries

Q5. Recall that $t=\sqrt{k \tau}$.
If it takes the bear a long time to get to the patch, to maximize the average energy gain, the bear should
A. Stay in the patch for a longer time
B. Stay in the patch less time

If τ is large, then the optimal time to stay in the patch $t=\sqrt{k \tau}$ is also large.

Bear eating berries

Q6. Recall that $t=\sqrt{k \tau}$.
There are two different patches which take the same amount of time τ to get to. In which patch should the bear spend more time in order to maximize the average energy gain?

Bear eating berries

Q6. Recall that $t=\sqrt{k \tau}$.
There are two different patches which take the same amount of time τ to get to. In which patch should the bear spend more time in order to maximize the average energy gain?

If τ is fixed, but there are two patches, one with k_{1} and one with k_{2}. The bear must stay in patch with the bigger k_{i} longer, to optimize the average rate of energy gain.

Another application - studying for finals

Optimal studying:

Another application - studying for finals

Optimal studying:

- As you spend more time studying, you get tired. Your efficiency decreases. Knowledge gained after t hours of study: $f(t)$.

Another application - studying for finals

Optimal studying:

- As you spend more time studying, you get tired. Your efficiency decreases. Knowledge gained after t hours of study: $f(t)$.
- Length of study break: τ.

Another application - studying for finals

Optimal studying:

- As you spend more time studying, you get tired. Your efficiency decreases. Knowledge gained after t hours of study: $f(t)$.
- Length of study break: τ.

Average rate of knowledge gained if you spend t hours before taking a break:

$$
R(t)=\frac{f(t)}{\tau+t}
$$

The derivative of $R(t)=\frac{f(t)}{\tau+t}$ is

$$
R^{\prime}(t)=\frac{f^{\prime}(t)(\tau+t)-f(t)}{(\tau+t)^{2}}
$$

The derivative of $R(t)=\frac{f(t)}{\tau+t}$ is

$$
R^{\prime}(t)=\frac{f^{\prime}(t)(\tau+t)-f(t)}{(\tau+t)^{2}}
$$

Thus, the critical points t satisfy

$$
f^{\prime}(t)=\frac{f(t)}{\tau+t}
$$

The derivative of $R(t)=\frac{f(t)}{\tau+t}$ is

$$
R^{\prime}(t)=\frac{f^{\prime}(t)(\tau+t)-f(t)}{(\tau+t)^{2}}
$$

Thus, the critical points t satisfy

$$
f^{\prime}(t)=\frac{f(t)}{\tau+t}=R(t)
$$

Marginal Value Theorem

Marginal Value Theorem: To maximize energy intake, the optimal time to stay at a patch of food with energy collection function $f(t)$ with travel time τ is

Marginal Value Theorem

Marginal Value Theorem: To maximize energy intake, the optimal time to stay at a patch of food with energy collection function $f(t)$ with travel time τ is

'Stay at the patch until your gathering rate is slower than the maximum average rate that can be sustained in the long run.'

